Solving Radical Equations Algebraically \& Graphically

Strategies for Solving Graphically

Method 1: Use a Single Function
Rearrange the radical equation so that one side is equal to zero. Graph the corresponding function and find the x-intercepts of the graph.

Example: Solve $2+\sqrt{x+4}=x+6$
Rearrange: $\sqrt{x+4}-x-4=0$
Graph: $y=\sqrt{x+4}-x-4$

Solutions: $x=-3$ or $x=-4$

Method 2: Use a System of Two Functions

Express each side of the equation as a function. Graph these functions and determine the value of x at the point(s) of intersection.

Example: Solve $2+\sqrt{x+4}=x+6$
Graph: $y=2+\sqrt{x+4}$ and $y=x+6$

Solutions: $x=-3$ or $x=-4$

Strategy for Solving Algebraically

Step 1: Isolate the radical.
Step 2: Square both sides of the equation to eliminate the radical.
Step 3: Continue to solve for x.
Step 4: Check for extraneous solution(s).
Example: Solve $2+\sqrt{x+4}=x+6$
$2+\sqrt{x+4}=x+6$
$\sqrt{x+4}=x+4$
$x+4=x^{2}+8 x+16$
$0=x^{2}+7 x+12$
$0=(x+3)(x+4)$
$x=-3$ or $x=-4$

Check $x=-3$:
$L H S=2+\sqrt{-3+4}=2+\sqrt{1}=3$
$R H S=-3+6=3$
$L H S=R H S$

Check $x=-4$:
$L H S=2+\sqrt{-4+4}=2+0=2$
$R H S=-4+6=2$
$L H S=R H S$

Example 1: Relate Roots and x-Intercepts

For the radical equation $2 \sqrt{x-4}-3=0$:

- Algebraically determine the root(s). State any restrictions on the variable.
- Graph the corresponding function (method 1) and determine the x-intercepts.
- Describe the connection between the root(s) of the equation and the x-intercept(s) of the graph of the corresponding function.

Solution:

Algebraically	Graphically
$2 \sqrt{x-4}-3=0$ Restrictions: Solve:: Solution(s): \qquad Check:	$2 \sqrt{x-4}-3=0$ Using technology, graph the corresponding function $y=2 \sqrt{x-4}-3$ and determine the x-intercept(s). x-intercept(s): \qquad Solution(s): \qquad

The root(s), or solution(s), of a radical equation are equal to the \qquad of the graph of the corresponding function.

Example 2: Solve a Radical Equation Involving an Extraneous Root

For the equation $\sqrt{x+5}=x+3$:

- Algebraically determine the root(s). State any restrictions on the variable.
- Graph the corresponding functions (method 2) and determine the point(s) of intersection.
- Describe the connection between the root(s) of the equation to the point(s) of intersection of the two functions.

Solution:

Algebraically	Graphically
$\sqrt{x+5}=x+3$ Restrictions: Solve:	$\sqrt{x+5}=x+3$ Using technology, graph the corresponding functions $y=\sqrt{x+5}$ and $y=x+3$ and determine the point(s) of intersection of the two graphs.
Solution(s): \qquad Check:	
	Point(s) of intersection: \qquad Solution(s):

The two functions intersect at the point \qquad . The value of x at this point, \qquad , is the solution to the equation.

