Solving Radical Equations Algebraically & Graphically

Strategies for Solving Graphically

Method 1: Use a Single Function

Rearrange the radical equation so that one side is equal to zero. Graph the corresponding function and find the x-intercepts of the graph.

Example: Solve $2 + \sqrt{x+4} = x+6$

Solutions: x = -3 or x = -4

Strategy for Solving Algebraically

Step 1: Isolate the radical.

- Step 2: Square both sides of the equation to eliminate the radical.
- Step 3: Continue to solve for x.
- **Step 4:** Check for extraneous solution(s).

Example: Solve $2 + \sqrt{x+4} = x+6$

Check
$$x = -3$$
:
 $2 + \sqrt{x + 4} = x + 6$
 $\sqrt{x + 4} = x + 4$
 $x + 4 = x^2 + 8x + 16$
 $0 = x^2 + 7x + 12$
 $0 = (x + 3)(x + 4)$
 $x = -3 \text{ or } x = -4$
 $LHS = 2 + \sqrt{-3 + 4} = 2 + \sqrt{1} = 3$
 $RHS = -3 + 6 = 3$
 $LHS = RHS$
Check $x = -4 = 3$
 $LHS = 2 + \sqrt{-4 + 4} = 2 + 0 = 2$
 $RHS = -4 + 6 = 2$
 $LHS = RHS$

Method 2: Use a System of Two Functions

Express each side of the equation as a function. Graph these functions and determine the value of x at the point(s) of intersection.

Example: Solve $2 + \sqrt{x+4} = x+6$

Graph:
$$y = 2 + \sqrt{x+4}$$
 and $y = x+6$

Solutions: x = -3 or x = -4

Example 1: Relate Roots and x-Intercepts

For the radical equation $2\sqrt{x-4} - 3 = 0$:

- Algebraically determine the root(s). State any restrictions on the variable.
- Graph the corresponding function (method 1) and determine the x-intercepts.
- Describe the connection between the root(s) of the equation and the x-intercept(s) of the graph of the corresponding function.

Solution:

Algebraically	Graphically
$2\sqrt{x-4} - 3 = 0$	$2\sqrt{x-4} - 3 = 0$
Restrictions:	Using technology, graph the corresponding function
Solve::	$y = 2\sqrt{x-4} - 3$ and determine the x-intercept(s).
Solution(s):	x-intercept(s):
Check:	Solution(s):

The root(s), or solution(s), of a radical equation are equal to the ______ of the graph of the corresponding function.

Example 2: Solve a Radical Equation Involving an Extraneous Root

For the equation $\sqrt{x+5} = x+3$:

- Algebraically determine the root(s). State any restrictions on the variable.
- Graph the corresponding functions (method 2) and determine the point(s) of intersection.
- Describe the connection between the root(s) of the equation to the point(s) of intersection of the two functions.

Solution:

Algebraically	Graphically
$\sqrt{x+5} = x+3$ Restrictions: Solve:	$\sqrt{x+5} = x+3$ Using technology, graph the corresponding functions $y = \sqrt{x+5}$ and $y = x+3$ and determine the point(s) of intersection of the two graphs.
Check:	Point(s) of intersection: Solution(s):

The two functions intersect at the point ______. The value of x at this point, ______, is the solution to the equation.